跳转至

在上一篇文章最后,我给你留了一个关于加锁规则的问题。今天,我们就从这个问题说起吧。

为了便于说明问题,这一篇文章,我们就先使用一个小一点儿的表。建表和初始化语句如下(为了便于本期的例子说明,我把上篇文章中用到的表结构做了点儿修改):

CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `c` int(11) DEFAULT NULL,
  `d` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `c` (`c`)
) ENGINE=InnoDB;

insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);

这个表除了主键id外,还有一个索引c,初始化语句在表中插入了6行数据。

上期我留给你的问题是,下面的语句序列,是怎么加锁的,加的锁又是什么时候释放的呢?

begin;
select * from t where d=5 for update;
commit;

比较好理解的是,这个语句会命中d=5的这一行,对应的主键id=5,因此在select 语句执行完成后,id=5这一行会加一个写锁,而且由于两阶段锁协议,这个写锁会在执行commit语句的时候释放。

由于字段d上没有索引,因此这条查询语句会做全表扫描。那么,其他被扫描到的,但是不满足条件的5行记录上,会不会被加锁呢?

我们知道,InnoDB的默认事务隔离级别是可重复读,所以本文接下来没有特殊说明的部分,都是设定在可重复读隔离级别下。

幻读是什么?

现在,我们就来分析一下,如果只在id=5这一行加锁,而其他行的不加锁的话,会怎么样。

下面先来看一下这个场景(注意:这是我假设的一个场景):

图 1 假设只在id=5这一行加行锁

可以看到,session A里执行了三次查询,分别是Q1、Q2和Q3。它们的SQL语句相同,都是select * from t where d=5 for update。这个语句的意思你应该很清楚了,查所有d=5的行,而且使用的是当前读,并且加上写锁。现在,我们来看一下这三条SQL语句,分别会返回什么结果。

  1. Q1只返回id=5这一行;
  2. 在T2时刻,session B把id=0这一行的d值改成了5,因此T3时刻Q2查出来的是id=0和id=5这两行;
  3. 在T4时刻,session C又插入一行(1,1,5),因此T5时刻Q3查出来的是id=0、id=1和id=5的这三行。

其中,Q3读到id=1这一行的现象,被称为“幻读”。也就是说,幻读指的是一个事务在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行。

这里,我需要对“幻读”做一个说明:

  1. 在可重复读隔离级别下,普通的查询是快照读,是不会看到别的事务插入的数据的。因此,幻读在“当前读”下才会出现。
  2. 上面session B的修改结果,被session A之后的select语句用“当前读”看到,不能称为幻读。幻读仅专指“新插入的行”。

如果只从第8篇文章《事务到底是隔离的还是不隔离的?》我们学到的事务可见性规则来分析的话,上面这三条SQL语句的返回结果都没有问题。

因为这三个查询都是加了for update,都是当前读。而当前读的规则,就是要能读到所有已经提交的记录的最新值。并且,session B和sessionC的两条语句,执行后就会提交,所以Q2和Q3就是应该看到这两个事务的操作效果,而且也看到了,这跟事务的可见性规则并不矛盾。

但是,这是不是真的没问题呢?

不,这里还真就有问题。

幻读有什么问题?

首先是语义上的。session A在T1时刻就声明了,“我要把所有d=5的行锁住,不准别的事务进行读写操作”。而实际上,这个语义被破坏了。

如果现在这样看感觉还不明显的话,我再往session B和session C里面分别加一条SQL语句,你再看看会出现什么现象。

图 2 假设只在id=5这一行加行锁--语义被破坏

session B的第二条语句update t set c=5 where id=0,语义是“我把id=0、d=5这一行的c值,改成了5”。

由于在T1时刻,session A 还只是给id=5这一行加了行锁, 并没有给id=0这行加上锁。因此,session B在T2时刻,是可以执行这两条update语句的。这样,就破坏了 session A 里Q1语句要锁住所有d=5的行的加锁声明。

session C也是一样的道理,对id=1这一行的修改,也是破坏了Q1的加锁声明。

其次,是数据一致性的问题。

我们知道,锁的设计是为了保证数据的一致性。而这个一致性,不止是数据库内部数据状态在此刻的一致性,还包含了数据和日志在逻辑上的一致性。

为了说明这个问题,我给session A在T1时刻再加一个更新语句,即:update t set d=100 where d=5。

图 3 假设只在id=5这一行加行锁--数据一致性问题

update的加锁语义和select …for update 是一致的,所以这时候加上这条update语句也很合理。session A声明说“要给d=5的语句加上锁”,就是为了要更新数据,新加的这条update语句就是把它认为加上了锁的这一行的d值修改成了100。

现在,我们来分析一下图3执行完成后,数据库里会是什么结果。

  1. 经过T1时刻,id=5这一行变成 (5,5,100),当然这个结果最终是在T6时刻正式提交的;
  2. 经过T2时刻,id=0这一行变成(0,5,5);
  3. 经过T4时刻,表里面多了一行(1,5,5);
  4. 其他行跟这个执行序列无关,保持不变。

这样看,这些数据也没啥问题,但是我们再来看看这时候binlog里面的内容。

  1. T2时刻,session B事务提交,写入了两条语句;
  2. T4时刻,session C事务提交,写入了两条语句;
  3. T6时刻,session A事务提交,写入了update t set d=100 where d=5 这条语句。

我统一放到一起的话,就是这样的:

update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/*所有d=5的行,d改成100*/

好,你应该看出问题了。这个语句序列,不论是拿到备库去执行,还是以后用binlog来克隆一个库,这三行的结果,都变成了 (0,5,100)、(1,5,100)和(5,5,100)。

也就是说,id=0和id=1这两行,发生了数据不一致。这个问题很严重,是不行的。

到这里,我们再回顾一下,这个数据不一致到底是怎么引入的?

我们分析一下可以知道,这是我们假设“select * from t where d=5 for update这条语句只给d=5这一行,也就是id=5的这一行加锁”导致的。

所以我们认为,上面的设定不合理,要改。

那怎么改呢?我们把扫描过程中碰到的行,也都加上写锁,再来看看执行效果。

图 4 假设扫描到的行都被加上了行锁

由于session A把所有的行都加了写锁,所以session B在执行第一个update语句的时候就被锁住了。需要等到T6时刻session A提交以后,session B才能继续执行。

这样对于id=0这一行,在数据库里的最终结果还是 (0,5,5)。在binlog里面,执行序列是这样的:

insert into t values(1,1,5); /*(1,1,5)*/
update t set c=5 where id=1; /*(1,5,5)*/

update t set d=100 where d=5;/*所有d=5的行,d改成100*/

update t set d=5 where id=0; /*(0,0,5)*/
update t set c=5 where id=0; /*(0,5,5)*/

可以看到,按照日志顺序执行,id=0这一行的最终结果也是(0,5,5)。所以,id=0这一行的问题解决了。

但同时你也可以看到,id=1这一行,在数据库里面的结果是(1,5,5),而根据binlog的执行结果是(1,5,100),也就是说幻读的问题还是没有解决。为什么我们已经这么“凶残”地,把所有的记录都上了锁,还是阻止不了id=1这一行的插入和更新呢?

原因很简单。在T3时刻,我们给所有行加锁的时候,id=1这一行还不存在,不存在也就加不上锁。

也就是说,即使把所有的记录都加上锁,还是阻止不了新插入的记录,这也是为什么“幻读”会被单独拿出来解决的原因。

到这里,其实我们刚说明完文章的标题 :幻读的定义和幻读有什么问题。

接下来,我们再看看InnoDB怎么解决幻读的问题。

如何解决幻读?

现在你知道了,产生幻读的原因是,行锁只能锁住行,但是新插入记录这个动作,要更新的是记录之间的“间隙”。因此,为了解决幻读问题,InnoDB只好引入新的锁,也就是间隙锁(Gap Lock)。

顾名思义,间隙锁,锁的就是两个值之间的空隙。比如文章开头的表t,初始化插入了6个记录,这就产生了7个间隙。

图 5 表t主键索引上的行锁和间隙锁

这样,当你执行 select * from t where d=5 for update的时候,就不止是给数据库中已有的6个记录加上了行锁,还同时加了7个间隙锁。这样就确保了无法再插入新的记录。

也就是说这时候,在一行行扫描的过程中,不仅将给行加上了行锁,还给行两边的空隙,也加上了间隙锁。

现在你知道了,数据行是可以加上锁的实体,数据行之间的间隙,也是可以加上锁的实体。但是间隙锁跟我们之前碰到过的锁都不太一样。

比如行锁,分成读锁和写锁。下图就是这两种类型行锁的冲突关系。

图6 两种行锁间的冲突关系

也就是说,跟行锁有冲突关系的是“另外一个行锁”。

但是间隙锁不一样,跟间隙锁存在冲突关系的,是“往这个间隙中插入一个记录”这个操作。间隙锁之间都不存在冲突关系。

这句话不太好理解,我给你举个例子:

图7 间隙锁之间不互锁

这里session B并不会被堵住。因为表t里并没有c=7这个记录,因此session A加的是间隙锁(5,10)。而session B也是在这个间隙加的间隙锁。它们有共同的目标,即:保护这个间隙,不允许插入值。但,它们之间是不冲突的。

间隙锁和行锁合称next-key lock,每个next-key lock是前开后闭区间。也就是说,我们的表t初始化以后,如果用select * from t for update要把整个表所有记录锁起来,就形成了7个next-key lock,分别是 (-∞,0]、(0,5]、(5,10]、(10,15]、(15,20]、(20, 25]、(25, +supremum]。

备注:这篇文章中,如果没有特别说明,我们把间隙锁记为开区间,把next-key lock记为前开后闭区间。

你可能会问说,这个supremum从哪儿来的呢?

这是因为+∞是开区间。实现上,InnoDB给每个索引加了一个不存在的最大值supremum,这样才符合我们前面说的“都是前开后闭区间”。

间隙锁和next-key lock的引入,帮我们解决了幻读的问题,但同时也带来了一些“困扰”。

在前面的文章中,就有同学提到了这个问题。我把他的问题转述一下,对应到我们这个例子的表来说,业务逻辑这样的:任意锁住一行,如果这一行不存在的话就插入,如果存在这一行就更新它的数据,代码如下:

begin;
select * from t where id=N for update;

/*如果行不存在*/
insert into t values(N,N,N);
/*如果行存在*/
update t set d=N set id=N;

commit;

可能你会说,这个不是insert … on duplicate key update 就能解决吗?但其实在有多个唯一键的时候,这个方法是不能满足这位提问同学的需求的。至于为什么,我会在后面的文章中再展开说明。

现在,我们就只讨论这个逻辑。

这个同学碰到的现象是,这个逻辑一旦有并发,就会碰到死锁。你一定也觉得奇怪,这个逻辑每次操作前用for update锁起来,已经是最严格的模式了,怎么还会有死锁呢?

这里,我用两个session来模拟并发,并假设N=9。

图8 间隙锁导致的死锁

你看到了,其实都不需要用到后面的update语句,就已经形成死锁了。我们按语句执行顺序来分析一下:

  1. session A 执行select … for update语句,由于id=9这一行并不存在,因此会加上间隙锁(5,10);
  2. session B 执行select … for update语句,同样会加上间隙锁(5,10),间隙锁之间不会冲突,因此这个语句可以执行成功;
  3. session B 试图插入一行(9,9,9),被session A的间隙锁挡住了,只好进入等待;
  4. session A试图插入一行(9,9,9),被session B的间隙锁挡住了。

至此,两个session进入互相等待状态,形成死锁。当然,InnoDB的死锁检测马上就发现了这对死锁关系,让session A的insert语句报错返回了。

你现在知道了,间隙锁的引入,可能会导致同样的语句锁住更大的范围,这其实是影响了并发度的。其实,这还只是一个简单的例子,在下一篇文章中我们还会碰到更多、更复杂的例子。

你可能会说,为了解决幻读的问题,我们引入了这么一大串内容,有没有更简单一点的处理方法呢。

我在文章一开始就说过,如果没有特别说明,今天和你分析的问题都是在可重复读隔离级别下的,间隙锁是在可重复读隔离级别下才会生效的。所以,你如果把隔离级别设置为读提交的话,就没有间隙锁了。但同时,你要解决可能出现的数据和日志不一致问题,需要把binlog格式设置为row。这,也是现在不少公司使用的配置组合。

前面文章的评论区有同学留言说,他们公司就使用的是读提交隔离级别加binlog_format=row的组合。他曾问他们公司的DBA说,你为什么要这么配置。DBA直接答复说,因为大家都这么用呀。

所以,这个同学在评论区就问说,这个配置到底合不合理。

关于这个问题本身的答案是,如果读提交隔离级别够用,也就是说,业务不需要可重复读的保证,这样考虑到读提交下操作数据的锁范围更小(没有间隙锁),这个选择是合理的。

但其实我想说的是,配置是否合理,跟业务场景有关,需要具体问题具体分析。

但是,如果DBA认为之所以这么用的原因是“大家都这么用”,那就有问题了,或者说,迟早会出问题。

比如说,大家都用读提交,可是逻辑备份的时候,mysqldump为什么要把备份线程设置成可重复读呢?(这个我在前面的文章中已经解释过了,你可以再回顾下第6篇文章《全局锁和表锁 :给表加个字段怎么有这么多阻碍?》的内容)

然后,在备份期间,备份线程用的是可重复读,而业务线程用的是读提交。同时存在两种事务隔离级别,会不会有问题?

进一步地,这两个不同的隔离级别现象有什么不一样的,关于我们的业务,“用读提交就够了”这个结论是怎么得到的?

如果业务开发和运维团队这些问题都没有弄清楚,那么“没问题”这个结论,本身就是有问题的。

小结

今天我们从上一篇文章的课后问题说起,提到了全表扫描的加锁方式。我们发现即使给所有的行都加上行锁,仍然无法解决幻读问题,因此引入了间隙锁的概念。

我碰到过很多对数据库有一定了解的业务开发人员,他们在设计数据表结构和业务SQL语句的时候,对行锁有很准确的认识,但却很少考虑到间隙锁。最后的结果,就是生产库上会经常出现由于间隙锁导致的死锁现象。

行锁确实比较直观,判断规则也相对简单,间隙锁的引入会影响系统的并发度,也增加了锁分析的复杂度,但也有章可循。下一篇文章,我就会为你讲解InnoDB的加锁规则,帮你理顺这其中的“章法”。

作为对下一篇文章的预习,我给你留下一个思考题。

图9 事务进入锁等待状态

如果你之前没有了解过本篇文章的相关内容,一定觉得这三个语句简直是风马牛不相及。但实际上,这里session B和session C的insert 语句都会进入锁等待状态。

你可以试着分析一下,出现这种情况的原因是什么?

这里需要说明的是,这其实是我在下一篇文章介绍加锁规则后才能回答的问题,是留给你作为预习的,其中session C被锁住这个分析是有点难度的。如果你没有分析出来,也不要气馁,我会在下一篇文章和你详细说明。

你也可以说说,你的线上MySQL配置的是什么隔离级别,为什么会这么配置?你有没有碰到什么场景,是必须使用可重复读隔离级别的呢?

你可以把你的碰到的场景和分析写在留言区里,我会在下一篇文章选取有趣的评论跟大家一起分享和分析。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。

上期问题时间

我们在本文的开头回答了上期问题。有同学的回答中还说明了读提交隔离级别下,在语句执行完成后,是只有行锁的。而且语句执行完成后,InnoDB就会把不满足条件的行行锁去掉。

当然了,c=5这一行的行锁,还是会等到commit的时候才释放的。

评论区留言点赞板:

@薛畅 、@张永志同学给出了正确答案。而且提到了在读提交隔离级别下,是只有行锁的。
@帆帆帆帆帆帆帆帆、@欧阳成 对上期的例子做了验证,需要说明一下,需要在启动配置里面增加performance_schema=on,才能用上这个功能,performance_schema库里的表才有数据。

精选留言(15)
  • 忍者无敌1995 👍(42) 💬(8)

    老师之前的留言说错了,重新梳理下: 图8:间隙锁导致的死锁;我把innodb_locks_unsafe_for_binlog设置为1之后,session B并不会blocked,session A insert会阻塞住,但是不会提示死锁;然后session B提交执行成功,session A提示主键冲突 这个是因为将innodb_locks_unsafe_for_binlog设置为1之后,什么原因造成的?

    2019-01-28

  • 令狐少侠 👍(101) 💬(99)

    老师,今天的文章对我影响很大,发现之前掌握的知识有些错误的地方,课后我用你的表结构根据以前不清楚的地方实践了一遍,现在有两个问题,麻烦您解答下 1.我在事务1中执行 begin;select * from t where c=5 for update;事务未提交,然后事务2中begin;update t set c=5 where id=0;执行阻塞,替换成update t set c=11 where id=0;执行不阻塞,我觉得原因是事务1执行时产生next-key lock范围是(0,5].(5,10]。我想问下update set操作c=xxx是会加锁吗?以及加锁的原理。 2.一直以为gap只会在二级索引上,看了你的死锁案例,发现主键索引上也会有gap锁?

    2018-12-28

  • 杜嘉嘉 👍(251) 💬(7)

    说真的,这一系列文章实用性真的很强,老师非常负责,想必牵扯到老师大量精力,希望老师再出好文章,谢谢您了,辛苦了

    2018-12-28

  • 薛畅 👍(90) 💬(25)

    可重复读隔离级别下,经试验: SELECT * FROM t where c>=15 and c<=20 for update; 会加如下锁: next-key lock:(10, 15], (15, 20] gap lock:(20, 25) SELECT * FROM t where c>=15 and c<=20 order by c desc for update; 会加如下锁: next-key lock:(5, 10], (10, 15], (15, 20] gap lock:(20, 25) session C 被锁住的原因就是根据索引 c 逆序排序后多出的 next-key lock:(5, 10] 同时我有个疑问:加不加 next-key lock:(5, 10] 好像都不会影响到 session A 可重复读的语义,那么为什么要加这个锁呢?

    2018-12-29

  • Mr.Strive.Z.H.L 👍(80) 💬(13)

    看了@令狐少侠 提出的问题,对锁有了新的认识: 对于非索引字段进行update或select .. for update操作,代价极高。所有记录上锁,以及所有间隔的锁。 对于索引字段进行上述操作,代价一般。只有索引字段本身和附近的间隔会被加锁。 这次终于明白,为什么说update语句的代价高!

    2019-01-03

  • 沉浮 👍(69) 💬(6)

    通过打印锁日志帮助理解问题 锁信息见括号里的说明。 TABLE LOCK table `guo_test`.`t` trx id 105275 lock mode IX RECORD LOCKS space id 31 page no 4 n bits 80 index c of table `guo_test`.`t` trx id 105275 lock_mode X Record lock, heap no 4 PHYSICAL RECORD: n_fields 2; compact format; info bits 0 ----(Next-Key Lock,索引锁c(5,10]) 0: len 4; hex 8000000a; asc ;; 1: len 4; hex 8000000a; asc ;; Record lock, heap no 5 PHYSICAL RECORD: n_fields 2; compact format; info bits 0 ----(Next-Key Lock,索引锁c (10,15]) 0: len 4; hex 8000000f; asc ;; 1: len 4; hex 8000000f; asc ;; Record lock, heap no 6 PHYSICAL RECORD: n_fields 2; compact format; info bits 0 ----(Next-Key Lock,索引锁c (15,20]) 0: len 4; hex 80000014; asc ;; 1: len 4; hex 80000014; asc ;; Record lock, heap no 7 PHYSICAL RECORD: n_fields 2; compact format; info bits 0 ----(Next-Key Lock,索引锁c (20,25]) 0: len 4; hex 80000019; asc ;; 1: len 4; hex 80000019; asc ;; RECORD LOCKS space id 31 page no 3 n bits 80 index PRIMARY of table `guo_test`.`t` trx id 105275 lock_mode X locks rec but not gap Record lock, heap no 5 PHYSICAL RECORD: n_fields 5; compact format; info bits 0 ----(记录锁 锁c=15对应的主键) 0: len 4; hex 8000000f; asc ;; 1: len 6; hex 0000000199e3; asc ;; 2: len 7; hex ca000001470134; asc G 4;; 3: len 4; hex 8000000f; asc ;; 4: len 4; hex 8000000f; asc ;; Record lock, heap no 6 PHYSICAL RECORD: n_fields 5; compact format; info bits 0 0: len 4; hex 80000014; asc ;; ----(记录锁 锁c=20对应的主键) 1: len 6; hex 0000000199e3; asc ;; 2: len 7; hex ca000001470140; asc G @;; 3: len 4; hex 80000014; asc ;; 4: len 4; hex 80000014; asc ;; 由于字数限制,正序及无排序的日志无法帖出,倒序日志比这两者,多了范围(Next-Key Lock,索引锁c(5,10]),个人理解是,加锁分两次,第一次,即正序的锁,第二次为倒序的锁,即多出的(5,10],在RR隔离级别, innodb在加锁的过程中会默认向后锁一个记录,加上Next-Key Lock,第一次加锁的时候10已经在范围,由于倒序,向后,即向5再加Next-key Lock,即多出的(5,10]范围

    2018-12-28

  • kabuka 👍(55) 💬(11)

    这样,当你执行 select * from t where d=5 for update 的时候,就不止是给数据库中已有的 6 个记录加上了行锁,还同时加了 还同时加了 7 个间隙锁 --------------------------------------------------------------- 老師這句話沒看太明白,數據庫只有一條d=5的記錄,為什麼會給6個記錄加上行鎖呢?

    2019-03-11

  • 神奇小懒懒 👍(45) 💬(9)

    insert into t values(0,0,0),(5,5,5), (10,10,10),(15,15,15),(20,20,20),(25,25,25); 运行mysql> begin; Query OK, 0 rows affected (0.00 sec) mysql> select * from t where c>=15 and c<=20 order by c desc for update; c 索引会在最右侧包含主键值,c索引的值为(0,0) (5,5) (10,10) (15,15) (20,20) (25,25) 此时c索引上锁的范围其实还要匹配主键值 。 思考题答案是,上限会扫到c索引(20,20) 上一个键,为了防止c为20 主键值小于25 的行插入,需要锁定(20,20) (25,25) 两者的间隙;开启另一会话(26,25,25)可以插入,而(24,25,25)会被堵塞。 下限会扫描到(15,15)的下一个键也就是(10,10),测试语句会继续扫描一个键就是(5,5) ,此时会锁定,(5,5) 到(15,15)的间隙,由于id是主键不可重复所以下限也是闭区间; 在本例的测试数据中添加(21,25,25)后就可以正常插入(24,25,25)

    2018-12-28

  • 发条橙子 。 👍(30) 💬(4)

    老师 , 看到幻读的定义是 : 幻读是一个事物在前后两次查询同一个范围的时候,后一次查询看到了前一次查询没有看到的行 。 那么我感觉 1. 读提交事务隔离级别 2.可重复读事务隔离级别的当前读 这两个都符合这个定义 。 那是不是说 在 1 、 2 条件下都会发生幻读 。 但是我看一些文章都说幻读是rr级别下的 , rc 是不可重复读 。请问是我理解有误还是文章写的不准确

    2019-01-01

  • hetiu 👍(23) 💬(5)

    mysql官方提到自增锁是个表级锁,老师能介绍下这个吗,以及实际项目中高并发insert是否需要避免自增主键?

    2019-01-06

  • 卡卡 👍(15) 💬(1)

    间歇锁 和 排他锁有关系吗?

    2019-03-26

  • 郭健 👍(12) 💬(4)

    老师,想请教您几个问题。1.在第六章MDL锁的时候,您说给大表增加字段和增加索引的时候要小心,之前做过测试,给一个一千万的数据增加索引有时需要40分钟,但是增加索引不会对表增加MDL锁吧。除了增加索引慢,还会对数据库有什么影响吗,我问我们dba,他说就开始和结束的时候上一下锁,没什么影响,我个人是持怀疑态度的。2,老师讲到表锁除了MDL锁,还有显示命令lock table的命令的表锁,老师我可以认为,在mysql中如果不显示使用lock table表锁的话,那么mysql是永远不会使用表锁的,如果锁的条件没有索引,使用的是锁住行锁+间隙控制并发。

    2018-12-30

  • Cv 👍(11) 💬(5)

    gap锁是否只会在可重复读的情况下才有? 在提交读和有唯一索引的情况下, 我也有遇到过因为gap死锁的情况 大致是这种sql session1 delete from t where id in (1,3,5); insert into t id(1,3,5); session2 delete from t where id in (2,4,6); insert into t id(2,4,6);

    2019-03-07

  • Geek_89bbab 👍(10) 💬(5)

    表结构 CREATE TABLE `t2` ( `id` int(11) DEFAULT NULL, `v` int(11) DEFAULT NULL ) ENGINE=InnoDB; 两个session, session1, | session2 step1: set session transaction isolation level repeatable read;(session1) | set session transaction isolation level repeatable read;(session2) step2: begin;(session1) step3: begin; (session2) step4: insert into t2 (id,v) values(1,1); (session1) step5: insert into t2 (id,v) select 2,2 from dual where not exists(select * from t2 where id=2); (session2) // 这里为什么会阻塞,直到session1提交呢? step6: commit; (session1) 该句执行完 session2不再阻塞 step7:commit;(session2) 我的疑惑就是为什么step5 那一步会阻塞?select * from t2 where id=2 不是快照读吗?也没有用for update,share lock 之类的语句,而且insert into 也没有什么唯一键约束,主键约束,怎么用数据库锁和隔离级别的知识来解释这个现象呢?请老师指点

    2019-01-07

  • ying 👍(9) 💬(5)

    工作中用不到select for update。举例子都是这个……想请问一下反复讨论这个sql的意义是?是否有更普遍的业务情景

    2019-04-19