跳转至

20 删除数据后,为什么内存占用率还是很高?

你好,我是蒋德钧。

在使用Redis时,我们经常会遇到这样一个问题:明明做了数据删除,数据量已经不大了,为什么使用top命令查看时,还会发现Redis占用了很多内存呢?

实际上,这是因为,当数据删除后,Redis释放的内存空间会由内存分配器管理,并不会立即返回给操作系统。所以,操作系统仍然会记录着给Redis分配了大量内存。

但是,这往往会伴随一个潜在的风险点:Redis释放的内存空间可能并不是连续的,那么,这些不连续的内存空间很有可能处于一种闲置的状态。这就会导致一个问题:虽然有空闲空间,Redis却无法用来保存数据,不仅会减少Redis能够实际保存的数据量,还会降低Redis运行机器的成本回报率。

打个形象的比喻。我们可以把Redis的内存空间比作高铁上的车厢座位数。如果高铁的车厢座位数很多,但运送的乘客数很少,那么,高铁运行一次的效率低,成本高,性价比就会降低,Redis也是一样。如果你正好租用了一台16GB内存的云主机运行Redis,但是却只保存了8GB的数据,那么,你租用这台云主机的成本回报率也会降低一半,这个结果肯定不是你想要的。

所以,这节课,我就和你聊聊Redis的内存空间存储效率问题,探索一下,为什么数据已经删除了,但内存却闲置着没有用,以及相应的解决方案。

什么是内存碎片?

通常情况下,内存空间闲置,往往是因为操作系统发生了较为严重的内存碎片。那么,什么是内存碎片呢?

为了方便你理解,我还是借助高铁的车厢座位来进行解释。假设一个车厢的座位总共有60个,现在已经卖了57张票,你和2个小伙伴要乘坐高铁出门旅行,刚好需要三张票。不过,你们想要坐在一起,这样可以在路上聊天。但是,在选座位时,你们却发现,已经买不到连续的座位了。于是,你们只好换了一趟车。这样一来,你们需要改变出行时间,而且这趟车就空置了三个座位。

其实,这趟车的空座位是和你们的人数相匹配的,只是这些空座位是分散的,如下图所示:

我们可以把这些分散的空座位叫作“车厢座位碎片”,知道了这一点,操作系统的内存碎片就很容易理解了。虽然操作系统的剩余内存空间总量足够,但是,应用申请的是一块连续地址空间的N字节,但在剩余的内存空间中,没有大小为N字节的连续空间了,那么,这些剩余空间就是内存碎片(比如上图中的“空闲2字节”和“空闲1字节”,就是这样的碎片)。

那么,Redis中的内存碎片是什么原因导致的呢?接下来,我带你来具体看一看。我们只有了解了内存碎片的成因,才能对症下药,把Redis占用的内存空间充分利用起来,增加存储的数据量。

内存碎片是如何形成的?

其实,内存碎片的形成有内因和外因两个层面的原因。简单来说,内因是操作系统的内存分配机制,外因是Redis的负载特征。

内因:内存分配器的分配策略

内存分配器的分配策略就决定了操作系统无法做到“按需分配”。这是因为,内存分配器一般是按固定大小来分配内存,而不是完全按照应用程序申请的内存空间大小给程序分配。

Redis可以使用libc、jemalloc、tcmalloc多种内存分配器来分配内存,默认使用jemalloc。接下来,我就以jemalloc为例,来具体解释一下。其他分配器也存在类似的问题。

jemalloc的分配策略之一,是按照一系列固定的大小划分内存空间,例如8字节、16字节、32字节、48字节,…, 2KB、4KB、8KB等。当程序申请的内存最接近某个固定值时,jemalloc会给它分配相应大小的空间。

这样的分配方式本身是为了减少分配次数。例如,Redis申请一个20字节的空间保存数据,jemalloc就会分配32字节,此时,如果应用还要写入10字节的数据,Redis就不用再向操作系统申请空间了,因为刚才分配的32字节已经够用了,这就避免了一次分配操作。

但是,如果Redis每次向分配器申请的内存空间大小不一样,这种分配方式就会有形成碎片的风险,而这正好来源于Redis的外因了。

外因:键值对大小不一样和删改操作

Redis通常作为共用的缓存系统或键值数据库对外提供服务,所以,不同业务应用的数据都可能保存在Redis中,这就会带来不同大小的键值对。这样一来,Redis申请内存空间分配时,本身就会有大小不一的空间需求。这是第一个外因。

但是咱们刚刚讲过,内存分配器只能按固定大小分配内存,所以,分配的内存空间一般都会比申请的空间大一些,不会完全一致,这本身就会造成一定的碎片,降低内存空间存储效率。

比如说,应用A保存6字节数据,jemalloc按分配策略分配8字节。如果应用A不再保存新数据,那么,这里多出来的2字节空间就是内存碎片了,如下图所示:

第二个外因是,这些键值对会被修改和删除,这会导致空间的扩容和释放。具体来说,一方面,如果修改后的键值对变大或变小了,就需要占用额外的空间或者释放不用的空间。另一方面,删除的键值对就不再需要内存空间了,此时,就会把空间释放出来,形成空闲空间。

我画了下面这张图来帮助你理解。

一开始,应用A、B、C、D分别保存了3、1、2、4字节的数据,并占据了相应的内存空间。然后,应用D删除了1个字节,这个1字节的内存空间就空出来了。紧接着,应用A修改了数据,从3字节变成了4字节。为了保持A数据的空间连续性,操作系统就需要把B的数据拷贝到别的空间,比如拷贝到D刚刚释放的空间中。此时,应用C和D也分别删除了2字节和1字节的数据,整个内存空间上就分别出现了2字节和1字节的空闲碎片。如果应用E想要一个3字节的连续空间,显然是不能得到满足的。因为,虽然空间总量够,但却是碎片空间,并不是连续的。

好了,到这里,我们就知道了造成内存碎片的内外因素,其中,内存分配器策略是内因,而Redis的负载属于外因,包括了大小不一的键值对和键值对修改删除带来的内存空间变化。

大量内存碎片的存在,会造成Redis的内存实际利用率变低,接下来,我们就要来解决这个问题了。不过,在解决问题前,我们要先判断Redis运行过程中是否存在内存碎片。

如何判断是否有内存碎片?

Redis是内存数据库,内存利用率的高低直接关系到Redis运行效率的高低。为了让用户能监控到实时的内存使用情况,Redis自身提供了INFO命令,可以用来查询内存使用的详细信息,命令如下:

INFO memory
# Memory
used_memory:1073741736
used_memory_human:1024.00M
used_memory_rss:1997159792
used_memory_rss_human:1.86G
mem_fragmentation_ratio:1.86

这里有一个mem_fragmentation_ratio的指标,它表示的就是Redis当前的内存碎片率。那么,这个碎片率是怎么计算的呢?其实,就是上面的命令中的两个指标used_memory_rss和used_memory相除的结果。

mem_fragmentation_ratio = used_memory_rss/ used_memory

used_memory_rss是操作系统实际分配给Redis的物理内存空间,里面就包含了碎片;而used_memory是Redis为了保存数据实际申请使用的空间。

我简单举个例子。例如,Redis申请使用了100字节(used_memory),操作系统实际分配了128字节(used_memory_rss),此时,mem_fragmentation_ratio就是1.28。

那么,知道了这个指标,我们该如何使用呢?在这儿,我提供一些经验阈值:

  • mem_fragmentation_ratio 大于1但小于1.5。这种情况是合理的。这是因为,刚才我介绍的那些因素是难以避免的。毕竟,内因的内存分配器是一定要使用的,分配策略都是通用的,不会轻易修改;而外因由Redis负载决定,也无法限制。所以,存在内存碎片也是正常的。
  • mem_fragmentation_ratio 大于 1.5 。这表明内存碎片率已经超过了50%。一般情况下,这个时候,我们就需要采取一些措施来降低内存碎片率了。

如何清理内存碎片?

当Redis发生内存碎片后,一个“简单粗暴”的方法就是重启Redis实例。当然,这并不是一个“优雅”的方法,毕竟,重启Redis会带来两个后果:

  • 如果Redis中的数据没有持久化,那么,数据就会丢失;
  • 即使Redis数据持久化了,我们还需要通过AOF或RDB进行恢复,恢复时长取决于AOF或RDB的大小,如果只有一个Redis实例,恢复阶段无法提供服务。

所以,还有什么其他好办法吗?

幸运的是,从4.0-RC3版本以后,Redis自身提供了一种内存碎片自动清理的方法,我们先来看这个方法的基本机制。

内存碎片清理,简单来说,就是“搬家让位,合并空间”。

我还以刚才的高铁车厢选座为例,来解释一下。你和小伙伴不想耽误时间,所以直接买了座位不在一起的三张票。但是,上车后,你和小伙伴通过和别人调换座位,又坐到了一起。

这么一说,碎片清理的机制就很容易理解了。当有数据把一块连续的内存空间分割成好几块不连续的空间时,操作系统就会把数据拷贝到别处。此时,数据拷贝需要能把这些数据原来占用的空间都空出来,把原本不连续的内存空间变成连续的空间。否则,如果数据拷贝后,并没有形成连续的内存空间,这就不能算是清理了。

我画一张图来解释一下。

在进行碎片清理前,这段10字节的空间中分别有1个2字节和1个1字节的空闲空间,只是这两个空间并不连续。操作系统在清理碎片时,会先把应用D的数据拷贝到2字节的空闲空间中,并释放D原先所占的空间。然后,再把B的数据拷贝到D原来的空间中。这样一来,这段10字节空间的最后三个字节就是一块连续空间了。到这里,碎片清理结束。

不过,需要注意的是:碎片清理是有代价的,操作系统需要把多份数据拷贝到新位置,把原有空间释放出来,这会带来时间开销。因为Redis是单线程,在数据拷贝时,Redis只能等着,这就导致Redis无法及时处理请求,性能就会降低。而且,有的时候,数据拷贝还需要注意顺序,就像刚刚说的清理内存碎片的例子,操作系统需要先拷贝D,并释放D的空间后,才能拷贝B。这种对顺序性的要求,会进一步增加Redis的等待时间,导致性能降低。

那么,有什么办法可以尽量缓解这个问题吗?这就要提到,Redis专门为自动内存碎片清理功机制设置的参数了。我们可以通过设置参数,来控制碎片清理的开始和结束时机,以及占用的CPU比例,从而减少碎片清理对Redis本身请求处理的性能影响。

首先,Redis需要启用自动内存碎片清理,可以把activedefrag配置项设置为yes,命令如下:

config set activedefrag yes

这个命令只是启用了自动清理功能,但是,具体什么时候清理,会受到下面这两个参数的控制。这两个参数分别设置了触发内存清理的一个条件,如果同时满足这两个条件,就开始清理。在清理的过程中,只要有一个条件不满足了,就停止自动清理。

  • active-defrag-ignore-bytes 100mb:表示内存碎片的字节数达到100MB时,开始清理;
  • active-defrag-threshold-lower 10:表示内存碎片空间占操作系统分配给Redis的总空间比例达到10%时,开始清理。

为了尽可能减少碎片清理对Redis正常请求处理的影响,自动内存碎片清理功能在执行时,还会监控清理操作占用的CPU时间,而且还设置了两个参数,分别用于控制清理操作占用的CPU时间比例的上、下限,既保证清理工作能正常进行,又避免了降低Redis性能。这两个参数具体如下:

  • active-defrag-cycle-min 25: 表示自动清理过程所用CPU时间的比例不低于25%,保证清理能正常开展;
  • active-defrag-cycle-max 75:表示自动清理过程所用CPU时间的比例不高于75%,一旦超过,就停止清理,从而避免在清理时,大量的内存拷贝阻塞Redis,导致响应延迟升高。

自动内存碎片清理机制在控制碎片清理启停的时机上,既考虑了碎片的空间占比、对Redis内存使用效率的影响,还考虑了清理机制本身的CPU时间占比、对Redis性能的影响。而且,清理机制还提供了4个参数,让我们可以根据实际应用中的数据量需求和性能要求灵活使用,建议你在实践中好好地把这个机制用起来。

小结

这节课,我和你一起了解了Redis的内存空间效率问题,这里面的一个关键技术点就是要识别和处理内存碎片。简单来说,就是“三个一”:

  • info memory命令是一个好工具,可以帮助你查看碎片率的情况;
  • 碎片率阈值是一个好经验,可以帮忙你有效地判断是否要进行碎片清理了;
  • 内存碎片自动清理是一个好方法,可以避免因为碎片导致Redis的内存实际利用率降低,提升成本收益率。

内存碎片并不可怕,我们要做的就是了解它,重视它,并借用高效的方法解决它。

最后,我再给你提供一个小贴士:内存碎片自动清理涉及内存拷贝,这对Redis而言,是个潜在的风险。如果你在实践过程中遇到Redis性能变慢,记得通过日志看下是否正在进行碎片清理。如果Redis的确正在清理碎片,那么,我建议你调小active-defrag-cycle-max的值,以减轻对正常请求处理的影响。

每课一问

按照惯例,我给你提一个小问题。在这节课中,我提到,可以使用mem_fragmentation_ratio来判断Redis当前的内存碎片率是否严重,我给出的经验阈值都是大于1的。那么,我想请你来聊一聊,如果mem_fragmentation_ratio小于1了,Redis的内存使用是什么情况呢?会对Redis的性能和内存空间利用率造成什么影响呢?

欢迎你在留言区写下你的思考和答案,和我一起交流讨论,如果觉得今天的内容对你有所帮助,也欢迎分享给你的朋友或同事,我们下节课见。

精选留言(15)
  • Kaito 👍(310) 💬(16)

    如果 mem_fragmentation_ratio 小于 1 了,Redis 的内存使用是什么情况呢?会对 Redis 的性能和内存空间利用率造成什么影响? mem_fragmentation_ratio小于1,说明used_memory_rss小于了used_memory,这意味着操作系统分配给Redis进程的物理内存,要小于Redis实际存储数据的内存,也就是说Redis没有足够的物理内存可以使用了,这会导致Redis一部分内存数据会被换到Swap中,之后当Redis访问Swap中的数据时,延迟会变大,性能下降。 通过这篇文章了解到,Redis在进行内存碎片整理时,由于是主线程操作的,所以这块也是一个影响Redis性能的风险点。 其中active-defrag-ignore-bytes和active-defrag-threshold-lower参数主要用于控制达到什么阈值后开始碎片整理,如果配置的碎片大小和碎片率在可接受的范围内,那么Redis不会进行碎片整理,也就不会对Redis产生性能影响。 而达到设定阈值开始碎片整理后,active-defrag-cycle-min和active-defrag-cycle-max参数则用来控制在这期间,Redis主线程资源使用的上下限,这个需要根据碎片整理的时间、Redis的响应延迟进行权衡,合理配置。 我个人认为,应该优先保证Redis性能尽量不受影响,让碎片整理期间的资源消耗控制在稳定的范围内,并尽量缩短碎片整理的时间。

    2020-09-23

  • test 👍(42) 💬(0)

    mem_fragmentation_ratio小于1,说明redis内存不够用了,换了一部分到swap中,会严重影响性能。

    2020-09-23

  • Geek_b8d5c9 👍(21) 💬(0)

    有点想Java中的垃圾回收算法的标记整理

    2020-12-11

  • escray 👍(17) 💬(2)

    数据删除后,Redis 释放的内存空间由内存分配器管理,不会立刻返回给操作系统。 再加上内存碎片的问题,感觉是因为 Redis 是使用 C 语言实现的,如果是在 JVM 上,内存管理就不会成为棘手的问题了,当然性能上 JVM 比起 C 语言来还是有不少劣势。 其实 Redis 清理内存碎片的方式和 JVM 的内存管理也很类似。 active-defrag-ignore-bytes、active-defrag-threshold-lower、active-defrag-cycle-min、active-defrag-cycle-max 是 4 个和 Redis 内存碎片清理机制有关的参数,而 100mb、10、25、75 应该是老师给出的参考值或者是最佳实践吧。 如果 mem_fragmentation_ratio 小于 1,那么我来猜测一下,如果小于 0.5 感觉内存的利用率比较低,内存的 ROI 太低,可以考虑减少给 Redis 分配的内存;而在 0.5 ~ 1 之间的话,感觉应该是比较合适的,但是也有可能会有太多的碎片需要整理。 看了课代表的回答,惭愧的发现,我完全搞反了 used_memory_rss 和 used_memory 的含义,其中 rss 表示 resident set size used_memory: Total number of bytes allocated by Redis using its allocator (either standard libc, jemalloc, or an alternative allocator such as tcmalloc) used_memory_rss: Number of bytes that Redis allocated as seen by the operation system (a.k.a resident set size). Ideally, the used_memory_rss value should be only slightly higher than used_momory. When rss >> used, a large difference means there is memory fragmentation... When used >> rss, it means part of Redis memory has been swapped off by the operating system: expect some significant latencies. 在留言里没有看到老师的身影(“作者回复”),爱总结的非凡哥也不见了,只有课代表还在。

    2021-03-27

  • 树斌 👍(15) 💬(4)

    实际案例,redis-cluster三主三从,检查所有节点的内存碎片率均小于1,在0.7-0.9之间,used_memory基本每个节点都只有12m左右,但是检查swap确认是没有虚拟内存交换的,不知道这种情况作何解释?一直没闹明白

    2020-09-24

  • IT小僧 👍(14) 💬(4)

    小于1不一定是发生了swap 也有可能是因为内存空白页导致的,前者会影响性能,后者不会。

    2020-12-15

  • 悟空聊架构 👍(11) 💬(1)

    课后问题: 如果 mem_fragmentation_ratio 小于 1 了,Redis 的内存使用是什么情况呢?会对 Redis 的性能和内存空间利用率造成什么影响呢? mem_fragmentation_ratio = used_memory_rss / used_memory < 1 , 说明操作系统分配给Redis进程的物理内存 < Redis实际存储数据的内存。 原因和影响: 1.Redis 没有申请到足够的物理内存 2.Redis 的一部分内存数据会被换到 Swap 中 3.Redis访问 swap 中的数据时,相当于与磁盘进行交互,访问慢,性能下降。 swap 是什么? 内存 swap 是操作系统里将内存数据在内存和磁盘间来回换入和换出的机制,涉及到磁盘的读写。一旦出发 swap,性能会收到慢速磁盘读写的影响。 Redis 实例自身使用了大量的内存,导致物理机器的可用内存不足。 和 Redis 实例在同一台机器上运行的其他进程,在进行大量的文件读写操作,文件读写本身会占用系统,导致分配给 Redis 实例的内存量变少,进而出发 Redis 发生 swap。 如何识别和处理 Redis 内存碎片 info memory 命令是一个好工具,可以帮助你查看碎片率的情况; INFO memory 碎片率阈值是一个好经验,可以帮忙你有效地判断是否要进行碎片清理了; mem_fragmentation_ratio = used_memory_rss/ used_memory used_memory_rss 是操作系统实际分配给 Redis 的物理内存空间,里面就包含了碎片; used_memory 是 Redis 为了保存数据实际申请使用的空间 内存碎片自动清理是一个好方法,可以避免因为碎片导致 Redis 的内存实际利用率降低,提升成本收益率。 config set activedefrag yes active-defrag-ignore-bytes 100mb:表示内存碎片的字节数达到 100MB 时,开始清理; ​active-defrag-threshold-lower 10:表示内存碎片空间占操作系统分配给 Redis 的总空间比例达到 10% 时,开始清理。(第一个和第二个需要同时满足才会开始清理) active-defrag-cycle-min 25: 表示自动清理过程所用 CPU 时间的比例不低于 25%,保证清理能正常开展; active-defrag-cycle-max 75:表示自动清理过程所用 CPU 时间的比例不高于 75%,一旦超过,就停止清理,从而避免在清理时,大量的内存拷贝阻塞 Redis,导致响应延迟升高。

    2021-05-29

  • 数学汤家凤 👍(7) 💬(1)

    内存分配向上取整导致的内部碎片 内存反复分配回收导致的外部碎片 解决方法移动,什么时候移动?碎片太多且CPU不忙时移动

    2020-11-11

  • 小西几 👍(6) 💬(12)

    启用碎片整理的时候报错 127.0.0.1:6379> CONFIG SET activedefrag yes (error) DISABLED Active defragmentation cannot be enabled: it requires a Redis server compiled with a modified Jemalloc like the one shipped by default with the Redis source distribution 此时碎片率已经达到4.28,并且redis 还没有启用持久化, 其他数据: used_memory:3304902272 used_memory_human:3.08G used_memory_rss:14155644928 used_memory_rss_human:13.18G used_memory_peak:5176474576 used_memory_peak_human:4.82G 请问老师,我该怎么执行碎片整理。这是生产环境,比较重要。因为内存马上不够用了。

    2020-09-27

  • 日落黄昏下 👍(4) 💬(0)

    刚建的redis实例的内存碎片率一般会小于1,这个时候并没有数据占用内存,但是会创建复制积压缓冲区,由于此时并没有使用,操作系统并没有真正把内存分配给redis而redis是有记录这个内存的,所以造成了内存碎片率小于1

    2021-10-11

  • dfuru 👍(4) 💬(0)

    分配的物理空间小于申请的空间,发生swap,严重降低读写性能

    2020-10-08

  • Mousse 👍(3) 💬(1)

    蒋老师你好,文中你说redis的内存分配器有: libc、jemalloc、tcmalloc 。默认jemalloc。 我在我本地redis使用redis-server -v 得到:Redis server v=6.2.5 sha=00000000:0 malloc=libc bits=64 build=967e5ebd0d817150 这个是不是代表内存分配器使用了 libc? 这样导致我在redis.conf中设置activedefrag yes的时候就报错“ 'activedefrag yes' Active defragmentation cannot be enabled: it requires a Redis server compiled with a modified Jemalloc like the one shipped by default with the Redis source distribution ” 请问老师这是不是内存分配器的问题,如果是的话,如何切换?感谢

    2021-09-01

  • yyl 👍(3) 💬(0)

    mem_fragmentation_ratio 小于 1 ,是什么意思呢? 分配给Redis的内存,小于Redis申请的内存大小。假设系统只有4GB,没有其它进程与Redis抢夺物理内存资源。按照提问,Redis实际申请了8G内存,系统最多只能分配给其 4GB,其余的只能通过swap置换至磁盘了,此时Redis性能快速下降

    2020-11-14

  • 可怜大灰狼 👍(3) 💬(1)

    老师您好,4.0-RC3 版本之前没有自动清理,是不是只能重启服务?

    2020-09-23

  • 青青子衿 👍(3) 💬(0)

    这篇写的很好,感觉受益不小

    2020-09-23