跳转至

06 案例篇:系统的 CPU 使用率很高,但为啥却找不到高 CPU 的应用?

你好,我是倪朋飞。

上一节我讲了 CPU 使用率是什么,并通过一个案例教你使用 top、vmstat、pidstat 等工具,排查高 CPU 使用率的进程,然后再使用 perf top 工具,定位应用内部函数的问题。不过就有人留言了,说似乎感觉高 CPU 使用率的问题,还是挺容易排查的。

那是不是所有 CPU 使用率高的问题,都可以这么分析呢?我想,你的答案应该是否定的。

回顾前面的内容,我们知道,系统的 CPU 使用率,不仅包括进程用户态和内核态的运行,还包括中断处理、等待 I/O 以及内核线程等。所以,当你发现系统的 CPU 使用率很高的时候,不一定能找到相对应的高 CPU 使用率的进程

今天,我就用一个 Nginx + PHP 的 Web 服务的案例,带你来分析这种情况。

案例分析

你的准备

今天依旧探究系统CPU使用率高的情况,所以这次实验的准备工作,与上节课的准备工作基本相同,差别在于案例所用的 Docker 镜像不同。

本次案例还是基于 Ubuntu 18.04,同样适用于其他的 Linux 系统。我使用的案例环境如下所示:

  • 机器配置:2 CPU,8GB 内存
  • 预先安装 docker、sysstat、perf、ab 等工具,如 apt install docker.io sysstat linux-tools-common apache2-utils

前面我们讲到过,ab(apache bench)是一个常用的 HTTP 服务性能测试工具,这里同样用来模拟 Nginx 的客户端。由于 Nginx 和 PHP 的配置比较麻烦,我把它们打包成了两个 Docker 镜像,这样只需要运行两个容器,就可以得到模拟环境。

注意,这个案例要用到两台虚拟机,如下图所示:

你可以看到,其中一台用作 Web 服务器,来模拟性能问题;另一台用作 Web 服务器的客户端,来给 Web 服务增加压力请求。使用两台虚拟机是为了相互隔离,避免“交叉感染”。

接下来,我们打开两个终端,分别 SSH 登录到两台机器上,并安装上述工具。

同样注意,下面所有命令都默认以 root 用户运行,如果你是用普通用户身份登陆系统,请运行 sudo su root 命令切换到 root 用户。

走到这一步,准备工作就完成了。接下来,我们正式进入操作环节。

温馨提示:案例中 PHP 应用的核心逻辑比较简单,你可能一眼就能看出问题,但实际生产环境中的源码就复杂多了。所以,我依旧建议,操作之前别看源码,避免先入为主,而要把它当成一个黑盒来分析。这样,你可以更好把握,怎么从系统的资源使用问题出发,分析出瓶颈所在的应用,以及瓶颈在应用中大概的位置。

操作和分析

首先,我们在第一个终端,执行下面的命令运行 Nginx 和 PHP 应用:

$ docker run --name nginx -p 10000:80 -itd feisky/nginx:sp
$ docker run --name phpfpm -itd --network container:nginx feisky/php-fpm:sp

然后,在第二个终端,使用 curl 访问 http://[VM1的IP]:10000,确认 Nginx 已正常启动。你应该可以看到 It works! 的响应。

# 192.168.0.10是第一台虚拟机的IP地址
$ curl http://192.168.0.10:10000/
It works!

接着,我们来测试一下这个 Nginx 服务的性能。在第二个终端运行下面的 ab 命令。要注意,与上次操作不同的是,这次我们需要并发100个请求测试Nginx性能,总共测试1000个请求。

# 并发100个请求测试Nginx性能,总共测试1000个请求
$ ab -c 100 -n 1000 http://192.168.0.10:10000/
This is ApacheBench, Version 2.3 <$Revision: 1706008 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, 
...
Requests per second:    87.86 [#/sec] (mean)
Time per request:       1138.229 [ms] (mean)
...

从ab的输出结果我们可以看到,Nginx能承受的每秒平均请求数,只有 87 多一点,是不是感觉它的性能有点差呀。那么,到底是哪里出了问题呢?我们再用 top 和 pidstat 来观察一下。

这次,我们在第二个终端,将测试的并发请求数改成5,同时把请求时长设置为10分钟(-t 600)。这样,当你在第一个终端使用性能分析工具时, Nginx 的压力还是继续的。

继续在第二个终端运行 ab 命令:

$ ab -c 5 -t 600 http://192.168.0.10:10000/

然后,我们在第一个终端运行 top 命令,观察系统的 CPU 使用情况:

$ top
...
%Cpu(s): 80.8 us, 15.1 sy,  0.0 ni,  2.8 id,  0.0 wa,  0.0 hi,  1.3 si,  0.0 st
...

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 6882 root      20   0    8456   5052   3884 S   2.7  0.1   0:04.78 docker-containe
 6947 systemd+  20   0   33104   3716   2340 S   2.7  0.0   0:04.92 nginx
 7494 daemon    20   0  336696  15012   7332 S   2.0  0.2   0:03.55 php-fpm
 7495 daemon    20   0  336696  15160   7480 S   2.0  0.2   0:03.55 php-fpm
10547 daemon    20   0  336696  16200   8520 S   2.0  0.2   0:03.13 php-fpm
10155 daemon    20   0  336696  16200   8520 S   1.7  0.2   0:03.12 php-fpm
10552 daemon    20   0  336696  16200   8520 S   1.7  0.2   0:03.12 php-fpm
15006 root      20   0 1168608  66264  37536 S   1.0  0.8   9:39.51 dockerd
 4323 root      20   0       0      0      0 I   0.3  0.0   0:00.87 kworker/u4:1
...

观察 top 输出的进程列表可以发现,CPU 使用率最高的进程也只不过才 2.7%,看起来并不高。

然而,再看系统 CPU 使用率( %Cpu )这一行,你会发现,系统的整体 CPU 使用率是比较高的:用户 CPU 使用率(us)已经到了 80%,系统 CPU 为 15.1%,而空闲 CPU (id)则只有 2.8%。

为什么用户 CPU 使用率这么高呢?我们再重新分析一下进程列表,看看有没有可疑进程:

  • docker-containerd 进程是用来运行容器的,2.7% 的 CPU 使用率看起来正常;
  • Nginx 和 php-fpm 是运行 Web 服务的,它们会占用一些 CPU 也不意外,并且 2% 的 CPU 使用率也不算高;
  • 再往下看,后面的进程呢,只有 0.3% 的 CPU 使用率,看起来不太像会导致用户 CPU 使用率达到 80%。

那就奇怪了,明明用户 CPU 使用率都80%了,可我们挨个分析了一遍进程列表,还是找不到高 CPU 使用率的进程。看来top是不管用了,那还有其他工具可以查看进程 CPU 使用情况吗?不知道你记不记得我们的老朋友 pidstat,它可以用来分析进程的 CPU 使用情况。

接下来,我们还是在第一个终端,运行 pidstat 命令:

# 间隔1秒输出一组数据(按Ctrl+C结束)
$ pidstat 1
...
04:36:24      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command
04:36:25        0      6882    1.00    3.00    0.00    0.00    4.00     0  docker-containe
04:36:25      101      6947    1.00    2.00    0.00    1.00    3.00     1  nginx
04:36:25        1     14834    1.00    1.00    0.00    1.00    2.00     0  php-fpm
04:36:25        1     14835    1.00    1.00    0.00    1.00    2.00     0  php-fpm
04:36:25        1     14845    0.00    2.00    0.00    2.00    2.00     1  php-fpm
04:36:25        1     14855    0.00    1.00    0.00    1.00    1.00     1  php-fpm
04:36:25        1     14857    1.00    2.00    0.00    1.00    3.00     0  php-fpm
04:36:25        0     15006    0.00    1.00    0.00    0.00    1.00     0  dockerd
04:36:25        0     15801    0.00    1.00    0.00    0.00    1.00     1  pidstat
04:36:25        1     17084    1.00    0.00    0.00    2.00    1.00     0  stress
04:36:25        0     31116    0.00    1.00    0.00    0.00    1.00     0  atopacctd
...

观察一会儿,你是不是发现,所有进程的 CPU 使用率也都不高啊,最高的 Docker 和 Nginx 也只有 4% 和 3%,即使所有进程的 CPU 使用率都加起来,也不过是 21%,离 80% 还差得远呢!

最早的时候,我碰到这种问题就完全懵了:明明用户 CPU 使用率已经高达 80%,但我却怎么都找不到是哪个进程的问题。到这里,你也可以想想,你是不是也遇到过这种情况?还能不能再做进一步的分析呢?

后来我发现,会出现这种情况,很可能是因为前面的分析漏了一些关键信息。你可以先暂停一下,自己往上翻,重新操作检查一遍。或者,我们一起返回去分析 top 的输出,看看能不能有新发现。

现在,我们回到第一个终端,重新运行 top 命令,并观察一会儿:

$ top
top - 04:58:24 up 14 days, 15:47,  1 user,  load average: 3.39, 3.82, 2.74
Tasks: 149 total,   6 running,  93 sleeping,   0 stopped,   0 zombie
%Cpu(s): 77.7 us, 19.3 sy,  0.0 ni,  2.0 id,  0.0 wa,  0.0 hi,  1.0 si,  0.0 st
KiB Mem :  8169348 total,  2543916 free,   457976 used,  5167456 buff/cache
KiB Swap:        0 total,        0 free,        0 used.  7363908 avail Mem

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 6947 systemd+  20   0   33104   3764   2340 S   4.0  0.0   0:32.69 nginx
 6882 root      20   0   12108   8360   3884 S   2.0  0.1   0:31.40 docker-containe
15465 daemon    20   0  336696  15256   7576 S   2.0  0.2   0:00.62 php-fpm
15466 daemon    20   0  336696  15196   7516 S   2.0  0.2   0:00.62 php-fpm
15489 daemon    20   0  336696  16200   8520 S   2.0  0.2   0:00.62 php-fpm
 6948 systemd+  20   0   33104   3764   2340 S   1.0  0.0   0:00.95 nginx
15006 root      20   0 1168608  65632  37536 S   1.0  0.8   9:51.09 dockerd
15476 daemon    20   0  336696  16200   8520 S   1.0  0.2   0:00.61 php-fpm
15477 daemon    20   0  336696  16200   8520 S   1.0  0.2   0:00.61 php-fpm
24340 daemon    20   0    8184   1616    536 R   1.0  0.0   0:00.01 stress
24342 daemon    20   0    8196   1580    492 R   1.0  0.0   0:00.01 stress
24344 daemon    20   0    8188   1056    492 R   1.0  0.0   0:00.01 stress
24347 daemon    20   0    8184   1356    540 R   1.0  0.0   0:00.01 stress
...

这次从头开始看 top 的每行输出,咦?Tasks 这一行看起来有点奇怪,就绪队列中居然有 6 个 Running 状态的进程(6 running),是不是有点多呢?

回想一下 ab 测试的参数,并发请求数是 5。再看进程列表里, php-fpm 的数量也是 5,再加上 Nginx,好像同时有 6 个进程也并不奇怪。但真的是这样吗?

再仔细看进程列表,这次主要看 Running(R) 状态的进程。你有没有发现, Nginx 和所有的 php-fpm 都处于Sleep(S)状态,而真正处于 Running(R)状态的,却是几个 stress 进程。这几个 stress 进程就比较奇怪了,需要我们做进一步的分析。

我们还是使用 pidstat 来分析这几个进程,并且使用 -p 选项指定进程的 PID。首先,从上面 top 的结果中,找到这几个进程的 PID。比如,先随便找一个 24344,然后用 pidstat 命令看一下它的 CPU 使用情况:

$ pidstat -p 24344

16:14:55      UID       PID    %usr %system  %guest   %wait    %CPU   CPU  Command

奇怪,居然没有任何输出。难道是pidstat 命令出问题了吗?之前我说过,在怀疑性能工具出问题前,最好还是先用其他工具交叉确认一下。那用什么工具呢? ps 应该是最简单易用的。我们在终端里运行下面的命令,看看 24344 进程的状态:

# 从所有进程中查找PID是24344的进程
$ ps aux | grep 24344
root      9628  0.0  0.0  14856  1096 pts/0    S+   16:15   0:00 grep --color=auto 24344

还是没有输出。现在终于发现问题,原来这个进程已经不存在了,所以 pidstat 就没有任何输出。既然进程都没了,那性能问题应该也跟着没了吧。我们再用 top 命令确认一下:

$ top
...
%Cpu(s): 80.9 us, 14.9 sy,  0.0 ni,  2.8 id,  0.0 wa,  0.0 hi,  1.3 si,  0.0 st
...

  PID USER      PR  NI    VIRT    RES    SHR S  %CPU %MEM     TIME+ COMMAND
 6882 root      20   0   12108   8360   3884 S   2.7  0.1   0:45.63 docker-containe
 6947 systemd+  20   0   33104   3764   2340 R   2.7  0.0   0:47.79 nginx
 3865 daemon    20   0  336696  15056   7376 S   2.0  0.2   0:00.15 php-fpm
  6779 daemon    20   0    8184   1112    556 R   0.3  0.0   0:00.01 stress
...

好像又错了。结果还跟原来一样,用户 CPU 使用率还是高达 80.9%,系统 CPU 接近 15%,而空闲 CPU 只有 2.8%,Running 状态的进程有 Nginx、stress等。

可是,刚刚我们看到stress 进程不存在了,怎么现在还在运行呢?再细看一下 top 的输出,原来,这次 stress 进程的 PID 跟前面不一样了,原来的 PID 24344 不见了,现在的是 6779。

进程的 PID 在变,这说明什么呢?在我看来,要么是这些进程在不停地重启,要么就是全新的进程,这无非也就两个原因:

  • 第一个原因,进程在不停地崩溃重启,比如因为段错误、配置错误等等,这时,进程在退出后可能又被监控系统自动重启了。
  • 第二个原因,这些进程都是短时进程,也就是在其他应用内部通过 exec 调用的外面命令。这些命令一般都只运行很短的时间就会结束,你很难用 top 这种间隔时间比较长的工具发现(上面的案例,我们碰巧发现了)。

至于 stress,我们前面提到过,它是一个常用的压力测试工具。它的 PID 在不断变化中,看起来像是被其他进程调用的短时进程。要想继续分析下去,还得找到它们的父进程。

要怎么查找一个进程的父进程呢?没错,用 pstree 就可以用树状形式显示所有进程之间的关系:

$ pstree | grep stress
        |-docker-containe-+-php-fpm-+-php-fpm---sh---stress
        |         |-3*[php-fpm---sh---stress---stress]

从这里可以看到,stress 是被 php-fpm 调用的子进程,并且进程数量不止一个(这里是3个)。找到父进程后,我们能进入 app 的内部分析了。

首先,当然应该去看看它的源码。运行下面的命令,把案例应用的源码拷贝到 app 目录,然后再执行 grep 查找是不是有代码再调用 stress 命令:

# 拷贝源码到本地
$ docker cp phpfpm:/app .

# grep 查找看看是不是有代码在调用stress命令
$ grep stress -r app
app/index.php:// fake I/O with stress (via write()/unlink()).
app/index.php:$result = exec("/usr/local/bin/stress -t 1 -d 1 2>&1", $output, $status);

找到了,果然是 app/index.php 文件中直接调用了 stress 命令。

再来看看 app/index.php 的源代码:

$ cat app/index.php
<?php
// fake I/O with stress (via write()/unlink()).
$result = exec("/usr/local/bin/stress -t 1 -d 1 2>&1", $output, $status);
if (isset($_GET["verbose"]) && $_GET["verbose"]==1 && $status != 0) {
  echo "Server internal error: ";
  print_r($output);
} else {
  echo "It works!";
}
?>

可以看到,源码里对每个请求都会调用一个 stress 命令,模拟 I/O 压力。从注释上看,stress 会通过 write() 和 unlink() 对 I/O 进程进行压测,看来,这应该就是系统 CPU 使用率升高的根源了。

不过,stress 模拟的是 I/O 压力,而之前在 top 的输出中看到的,却一直是用户 CPU 和系统 CPU 升高,并没见到 iowait 升高。这又是怎么回事呢?stress 到底是不是 CPU 使用率升高的原因呢?

我们还得继续往下走。从代码中可以看到,给请求加入 verbose=1 参数后,就可以查看 stress 的输出。你先试试看,在第二个终端运行:

$ curl http://192.168.0.10:10000?verbose=1
Server internal error: Array
(
    [0] => stress: info: [19607] dispatching hogs: 0 cpu, 0 io, 0 vm, 1 hdd
    [1] => stress: FAIL: [19608] (563) mkstemp failed: Permission denied
    [2] => stress: FAIL: [19607] (394) <-- worker 19608 returned error 1
    [3] => stress: WARN: [19607] (396) now reaping child worker processes
    [4] => stress: FAIL: [19607] (400) kill error: No such process
    [5] => stress: FAIL: [19607] (451) failed run completed in 0s
)

看错误消息 mkstemp failed: Permission denied ,以及 failed run completed in 0s。原来 stress 命令并没有成功,它因为权限问题失败退出了。看来,我们发现了一个 PHP 调用外部 stress 命令的 bug:没有权限创建临时文件。

从这里我们可以猜测,正是由于权限错误,大量的 stress 进程在启动时初始化失败,进而导致用户 CPU 使用率的升高。

分析出问题来源,下一步是不是就要开始优化了呢?当然不是!既然只是猜测,那就需要再确认一下,这个猜测到底对不对,是不是真的有大量的 stress 进程。该用什么工具或指标呢?

我们前面已经用了 top、pidstat、pstree 等工具,没有发现大量的 stress 进程。那么,还有什么其他的工具可以用吗?

还记得上一期提到的 perf 吗?它可以用来分析 CPU 性能事件,用在这里就很合适。依旧在第一个终端中运行 perf record -g 命令 ,并等待一会儿(比如15秒)后按 Ctrl+C 退出。然后再运行 perf report 查看报告:

# 记录性能事件,等待大约15秒后按 Ctrl+C 退出
$ perf record -g

# 查看报告
$ perf report

这样,你就可以看到下图这个性能报告:

你看,stress 占了所有CPU时钟事件的 77%,而 stress 调用调用栈中比例最高的,是随机数生成函数 random(),看来它的确就是 CPU 使用率升高的元凶了。随后的优化就很简单了,只要修复权限问题,并减少或删除 stress 的调用,就可以减轻系统的 CPU 压力。

当然,实际生产环境中的问题一般都要比这个案例复杂,在你找到触发瓶颈的命令行后,却可能发现,这个外部命令的调用过程是应用核心逻辑的一部分,并不能轻易减少或者删除。

这时,你就得继续排查,为什么被调用的命令,会导致 CPU 使用率升高或 I/O 升高等问题。这些复杂场景的案例,我会在后面的综合实战里详细分析。

最后,在案例结束时,不要忘了清理环境,执行下面的 Docker 命令,停止案例中用到的 Nginx 进程:

$ docker rm -f nginx phpfpm

execsnoop

在这个案例中,我们使用了 top、pidstat、pstree 等工具分析了系统 CPU 使用率高的问题,并发现 CPU 升高是短时进程 stress 导致的,但是整个分析过程还是比较复杂的。对于这类问题,有没有更好的方法监控呢?

execsnoop 就是一个专为短时进程设计的工具。它通过 ftrace 实时监控进程的 exec() 行为,并输出短时进程的基本信息,包括进程 PID、父进程 PID、命令行参数以及执行的结果。

比如,用 execsnoop 监控上述案例,就可以直接得到 stress 进程的父进程 PID 以及它的命令行参数,并可以发现大量的 stress 进程在不停启动:

# 按 Ctrl+C 结束
$ execsnoop
PCOMM            PID    PPID   RET ARGS
sh               30394  30393    0
stress           30396  30394    0 /usr/local/bin/stress -t 1 -d 1
sh               30398  30393    0
stress           30399  30398    0 /usr/local/bin/stress -t 1 -d 1
sh               30402  30400    0
stress           30403  30402    0 /usr/local/bin/stress -t 1 -d 1
sh               30405  30393    0
stress           30407  30405    0 /usr/local/bin/stress -t 1 -d 1
...

execsnoop 所用的 ftrace 是一种常用的动态追踪技术,一般用于分析 Linux 内核的运行时行为,后面课程我也会详细介绍并带你使用。

小结

碰到常规问题无法解释的 CPU 使用率情况时,首先要想到有可能是短时应用导致的问题,比如有可能是下面这两种情况。

  • 第一,应用里直接调用了其他二进制程序,这些程序通常运行时间比较短,通过 top 等工具也不容易发现
  • 第二,应用本身在不停地崩溃重启,而启动过程的资源初始化,很可能会占用相当多的 CPU

对于这类进程,我们可以用 pstree 或者 execsnoop 找到它们的父进程,再从父进程所在的应用入手,排查问题的根源。

思考

最后,我想邀请你一起来聊聊,你所碰到的 CPU 性能问题。有没有哪个印象深刻的经历可以跟我分享呢?或者,在今天的案例操作中,你遇到了什么问题,又解决了哪些呢?你可以结合我的讲述,总结自己的思路。

欢迎在留言区和我讨论,也欢迎把这篇文章分享给你的同事、朋友。我们一起在实战中演练,在交流中进步。

精选留言(15)
  • sotey 👍(174) 💬(3)

    对老师膜拜!今天一早生产tomcat夯住了,16颗cpu全部98%以上,使用老师的方法加上java的工具成功定位到了问题线程和问题函数。

    2018-12-03

  • 好好学习 👍(78) 💬(1)

    perf record -ag -- sleep 2;perf report 一部到位

    2018-12-10

  • bruceding 👍(43) 💬(2)

    http://blog.bruceding.com/420.html 这个是之前的优化经历,通过 perf + 火焰图,定位热点代码,结合业务和网络分析,最终确定问题原因

    2019-02-11

  • 👍(18) 💬(8)

    老师好,我在实验的过程中,在最后使用 perf record -ag 的时候,发现记录下来的值,其中 stress 并不是消耗 CPU 最猛的进程,而是swapper,不知道什么原因?碰到这种情况时,该如何继续排查下去?以下是我的 perf report Samples: 223K of event 'cpu-clock', Event count (approx.): 55956000000 Children Self Command Shared Object Symbol + 11.54% 0.00% swapper [kernel.kallsyms] [k] cpu_startup_entry + 11.42% 0.00% swapper [kernel.kallsyms] [k] default_idle_call + 11.42% 0.00% swapper [kernel.kallsyms] [k] arch_cpu_idle + 11.42% 0.00% swapper [kernel.kallsyms] [k] default_idle + 11.05% 11.05% swapper [kernel.kallsyms] [k] native_safe_halt + 8.69% 0.00% swapper [kernel.kallsyms] [k] start_secondary + 4.36% 4.36% stress libc-2.24.so [.] 0x0000000000036387 + 3.44% 0.00% php-fpm libc-2.24.so [.] 0xffff808406d432e1 + 3.44% 0.00% php-fpm [unknown] [k] 0x6cb6258d4c544155 + 3.43% 3.43% stress stress [.] 0x0000000000002eff + 3.20% 0.00% stress [kernel.kallsyms] [k] page_fault + 3.20% 0.00% stress [kernel.kallsyms] [k] do_page_fault + 3.15% 0.76% stress [kernel.kallsyms] [k] __do_page_fault

    2018-12-16

  • bruceding 👍(8) 💬(1)

    对于内核函数的调试,4.0 的内核可以使用 eBPF 工具,2.6 或者 4.0 以下的工具,使用 systemtap。perf 是基于采样的原理。本文的例子 execsnoop 可以替换成 https://sourceware.org/systemtap/SystemTap_Beginners_Guide/threadtimessect.html。systemtap 中文资料比较少,本人也翻译了相关文档,参考:http://systemtap.bruceding.com/。

    2019-02-12

  • 每一段路都是一种领悟 👍(6) 💬(2)

    今天一个程序负载飙到140,最高点240,我们的服务器没有挂掉,真的是牛逼,另外使用这几天的方法,基本确认了程序的问题,质问开发后,他不好意思的告诉我,io高是因为自己程序偷了懒,好在这次找到证据了,作为以后的分析案例

    2018-12-24

  • Griffin 👍(6) 💬(1)

    实际生产环境中的进程更多,stress藏在ps中根本不容易发现,pstree的结果也非常大。老师有空讲讲如何找到这些异常进程的方法和灵感。

    2018-12-09

  • walker 👍(5) 💬(3)

    execsnoop这个工具在centos里找不到,有类似的代替品吗

    2018-12-03

  • 小贝_No_7 👍(4) 💬(1)

    最后的perf -g有疑问。这里并没有展示出明显的stress占比较高的情况。相反是swapper较多, stress的占比其实在10%一下。请问这个怎么解释? 我看到底下也有其他朋友有类似的疑问但是没得到很好的解析。谢谢啦。

    2019-05-03

  • 夜空中最亮的星 👍(3) 💬(1)

    execsnoop 这个工具没找到

    2018-12-03

  • kingkang 👍(2) 💬(3)

    倪老师你好,我自己用go写了一套微服务框架(基本网络架构是 一台http server+一台grpc server +三台mongodb 副本集群);如果grpc server不调用mongodb 查询的话,qps能稳定在36000左右,而且压测的时候,grpc server 的cpu使用率大概在60%左右,平均负载最高不会超过2.5(服务器都是四核8G的 )。如果一旦调用了mongodb查询的话,cpu使用率基本都能达到95%,平均负载最高能到4.6,而qps也下降到了6k左右。两种情况的内存差别并不大,系统内存一直维持在800M上下。我用老师教的方法,mongol db find方法cpu占用过高。这个方法并没办法做到进一步优化,请问老师我这个框架cpu使用率过高的情况是不是就没办法进一步优化了?另外就是,如果我在加一台grpc server,也就是http server 调用两个grpc server 对系统qps 增加并不大,这是为什么我一直想不明白?

    2019-07-24

  • rm -rf 😊ི 👍(2) 💬(1)

    想请教一下老师,running进程突然变多,突然变少的,是什么情况,主要是短时进程的问题吗?

    2019-03-25

  • 梦回汉唐 👍(2) 💬(1)

    查看瞬时进程,还可以用这个方法: watch -n 1 -d "ps -A -ostat,pid,ppid,cmd | grep -i '^r' | grep -v ps" 下面是输出: Every 1.0s: ps -A -ostat,pid,ppid,cmd | grep -i '^r' | grep -v ps Wed Mar 20 02:39:50 2019 R+ 13308 13307 /usr/local/bin/stress -t 1 -d 1 R+ 13313 13312 /usr/local/bin/stress -t 1 -d 1 R+ 13314 13311 /usr/local/bin/stress -t 1 -d 1 R+ 13319 13317 /usr/local/bin/stress -t 1 -d 1 R+ 13320 13318 /usr/local/bin/stress -t 1 -d 1

    2019-03-20

  • 刘韦菠 👍(2) 💬(1)

    我的perf record 里面 random 函数调用占比不是最高的, 最高的是一个叫做hoghdd 的函数, 这个函数里面包含了一些内存段错误和换页的函数. 这个是为什么呢? 我的机器是mac, 然后这个批次的mac ssd 性能有问题, 官方曾经给我发过返厂维修的通知邮件, 但是因为是公司的电脑, 所以我并没有弄去维修. hog hdd 是不是 占用hdd硬盘的意思呢? - 57.30% 0.03% stress stress [.] main ▒ - main ▒ + 21.77% hoghdd ▒ + 16.12% random_r ▒ + 12.09% random ▒

    2019-03-05

  • Wind~ 👍(2) 💬(1)

    之前给老师留言的问题已经自己搞定了,在后续的实验中我发现我的实验有些不太一样,还是希望老师看到后可以再指点一二,老师的ps和pidstat都没有输出,而我的则是有输出,但是分析的结果导向是一致的——线索都指向了stress ----通过pidstat [wind@aaa ~]$ pidstat -p 39945 Linux 3.10.0-862.el7.x86_64 (aaa) 2019年01月14日 _x86_64_ (1 CPU) 06时31分09秒 UID PID %usr %system %guest %CPU CPU Command 06时31分09秒 1 89962 0.00 0.00 0.00 0.00 0 php-fpm [wind@aaa ~]$ ----通过ps aux [wind@aaa ~]$ ps aux | grep 39945 bin 39945 1.3 0.7 336684 7688 pts/2 S+ 06:36 0:01 php-fpm: pool www wind 54077 0.0 0.0 112704 664 pts/3 R+ 06:38 0:00 grep --color=auto 39945 [wind@aaa ~]$ ----再通过ps -efl [wind@aaa ~]$ ps -lef | grep 121267 0 S bin 58233 121267 0 80 0 - 1070 do_wai 07:00 pts/2 00:00:00 sh -c /usr/local/bin/stress -t 1 -d 1 2>&1 0 S wind 58250 42935 0 80 0 - 28180 pipe_w 07:00 pts/3 00:00:00 grep --color=auto 121267 5 S bin 121267 75443 1 80 0 - 84171 pipe_w 06:52 pts/2 00:00:06 php-fpm: pool www ----但是我的实验中有些不同的地方是,php-fpm的京城并不会发生改变但是基本上都处于S状态很少会有R状态出现,但是如果出现R状态的话,那么在过0.5秒后,就必然会出现一个Z进程 ----并且在后续的perf report 中占比最高的也没有random函数 - 66.20% 0.00% stress stress [.] 0x000000000000168d ▒ - 0x168d ▒ - 5.49% 0x2f25 ▒ - 3.75% 0xffffffffba116768 ▒ - 3.74% 0xffffffffba11a925 ▒ - 2.94% 0xffffffffba11a597

    2019-01-13